login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = prime(n+1)^prime(n+1) - prime(n)^prime(n).
2

%I #15 Nov 20 2024 13:08:46

%S 23,3098,820418,285310847068,302589794921642,827239959011230171924,

%T 1977592415398427252359802,20880466021428256374041443786588,

%U 2567686153140330666561980302696661093572902

%N a(n) = prime(n+1)^prime(n+1) - prime(n)^prime(n).

%H G. C. Greubel, <a href="/A088385/b088385.txt">Table of n, a(n) for n = 1..75</a>

%F a(n) = A051674(n+1) - A051674(n). - _R. J. Mathar_, Apr 26 2007

%e a(5) = prime(6)^prime(6) - prime(5)^prime(5) = 13^13 - 11^11 = 302589794921642.

%t With[{P=Prime}, Table[P[n+1]^P[n+1]-P[n]^P[n], {n,30}]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 01 2009 *)

%t Differences[Table[p^p,{p,Prime[Range[10]]}]] (* _Harvey P. Dale_, Nov 20 2024 *)

%o (Magma) P:=NthPrime; [P(n+1)^P(n+1) - P(n)^P(n): n in [1..20]]; // _G. C. Greubel_, Dec 12 2022

%o (SageMath) P=nth_prime; [P(n+1)^P(n+1) - P(n)^P(n) for n in range(1,21)] # _G. C. Greubel_, Dec 12 2022

%Y Cf. A000040, A000312, A051674.

%K easy,nonn

%O 1,1

%A Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 08 2003