login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088335
Number of permutations in the symmetric group S_n such that the size of their centralizer is even.
2
0, 0, 2, 4, 16, 96, 576, 4320, 31872, 298368, 3052800, 34387200, 404029440, 5339473920, 75893207040, 1139356108800, 18079668633600, 310896849715200, 5654417758617600, 107707364764876800, 2145784566959308800, 45252164164799692800, 1003024255355781120000
OFFSET
0,3
LINKS
FORMULA
a(n) = n! - A088994(n).
MAPLE
b:= proc(n, i) option remember; `if`(((i+1)/2)^2<n, 0,
`if`(n=0, 1, b(n, i-2)+`if`(i>n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> n!-b(n, n-1+irem(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 27 2020
MATHEMATICA
b[n_, i_] := b[n, i] = If[((i + 1)/2)^2 < n, 0, If[n == 0, 1, b[n, i - 2] + If[i > n, 0, (i - 1)! b[n - i, i - 2] Binomial[n, i]]]];
a[n_] := n! - b[n, n - 1 + Mod[n, 2]];
a /@ Range[0, 30] (* Jean-François Alcover, Apr 08 2020, after Alois P. Heinz *)
PROG
(PARI) seq(n)={Vec(serlaplace(1/(1-x) - prod(k=1, n, 1+(k%2)*x^k/k + O(x*x^n))), -(n+1))} \\ Andrew Howroyd, Jan 27 2020
CROSSREFS
Sequence in context: A052835 A009565 A009838 * A066318 A308606 A378580
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 07 2003
EXTENSIONS
a(0)=0 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 27 2020
STATUS
approved