login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Values of x + 2y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
6

%I #9 Mar 09 2020 09:14:10

%S 5,7,8,11,11,13,14,16,17,17,19,20,19,20,23,23,25,25,26,25,28,29,28,29,

%T 31,29,31,32,35,35,32,34,37,35,38,37,35,38,41,37,41,41,43,44,43,43,46,

%U 41,47,46,49,49,47,49,44,47,49,50,49,53,49,50,53,52,55,49,56,56,52,53

%N Values of x + 2y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).

%t Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];

%t Sow[x + 2y /. s[[1]]]]]][[2, 1]] (* _Jean-François Alcover_, Mar 09 2020 *)

%Y Cf. A002476, A088241, A088242, A088243, A088296, A088298, A088977.

%K nonn

%O 1,1

%A _Lekraj Beedassy_, Nov 03 2003

%E More terms from _Ray Chandler_, Nov 04 2003