login
Smallest prime whose digits can be partitioned into n successive terms of an A.P. with common difference n, or 0 if no such number exists.
1

%I #17 Jun 23 2023 15:55:06

%S 2,13,0,15913,38131823,0,55626976839097,715233139475563,0,

%T 2939495969798999109119,1324354657687990101112123,0,

%U 4760738699112125138151164177190203,617589103117131145159173187201215229243,0,2339557187103119135151167183199215231247263

%N Smallest prime whose digits can be partitioned into n successive terms of an A.P. with common difference n, or 0 if no such number exists.

%C a(211) has 1008 digits. - _Michael S. Branicky_, Jun 23 2023

%H Michael S. Branicky, <a href="/A088253/b088253.txt">Table of n, a(n) for n = 1..210</a>

%F a(3*k) = 0. - _Michael S. Branicky_, Jun 23 2023

%e The terms of the A.P. in triangular form

%e 2

%e 1 3

%e 0 0 0

%e 1 5 9 13

%e 3 8 13 18 23

%e 0 0 0 0 0 0

%e ...

%e Sequence contains the primes arising as a concatenation of the terms of the n-th row.

%o (Python)

%o from gmpy2 import is_prime

%o from itertools import count

%o def a(n): return next(t for t in (int("".join(str(i) for i in range(k, k+n*n, n))) for k in count(1)) if is_prime(t)) if n%3 else 0

%o print([a(n) for n in range(1, 19)]) # _Michael S. Branicky_, Jun 23 2023

%K base,nonn

%O 1,1

%A _Amarnath Murthy_, Sep 26 2003

%E a(7)-a(10) from _Charlie Neder_, May 12 2019

%E a(11) and beyond from _Michael S. Branicky_, Jun 23 2023