Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Feb 24 2024 01:07:21
%S 2,6,7,11,15,19,20,24,28,32,33,37,41,45,46,50,54,58,59,63,67,71,72,76,
%T 80,84,85,89,93,97,98,102,106,110,111,115,119,123,124,128,132,136,137,
%U 141,145,149,150,154,158,162,163,167,171,175,176,180,184,188,189,193
%N Solutions x to x^n == 7 mod 13.
%D E. Grosswald, Topics From The Theory of Numbers, 1966, pp. 62-63.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F G.f.: x*(2 + 4*x + x^2 + 4*x^3 + 2*x^4)/(1 - x - x^4 + x^5). - _Philippe Deléham_, Dec 01 2016
%e 2^11 - 7 = 2041 = 11*157. Thus 2 is in the sequence.
%t LinearRecurrence[{1, 0, 0, 1, -1},{2, 6, 7, 11, 15},60] (* _Ray Chandler_, Aug 25 2015 *)
%o (PARI) conxkmap(a,p,n) = { for(x=1,n, for(j=1,n, y=x^j-a; if(y%p==0,print1(x","); break) ) ) }
%o (Magma) I:=[2,6,7,11,15]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // _Vincenzo Librandi_, Dec 02 2016
%K nonn,easy
%O 1,1
%A _Cino Hilliard_, Nov 03 2003