login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in g.f.^n is A004123(n).
2

%I #8 Feb 18 2017 12:06:09

%S 1,2,3,10,69,678,8496,128316,2258262,45292494,1018882779,25399668480,

%T 694999352141,20710476430548,667708554093132,23159551588872624,

%U 860001996926543616,34043670528120810846,1431191816223150995395

%N Coefficient of x^n in g.f.^n is A004123(n).

%H Vaclav Kotesovec, <a href="/A088222/b088222.txt">Table of n, a(n) for n = 0..320</a>

%F a(n) ~ 4 * (n-1)! / (27 * (log(3/2))^(n+1)). - _Vaclav Kotesovec_, Feb 11 2015, updated Feb 18 2017

%o (PARI) {a(n)=polcoeff(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, stirling(m, k, 2)*(2^k)*k!)*x^m/m +x^2*O(x^n)))), n)}

%o for(n=0, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Feb 11 2015

%K nonn

%O 0,2

%A _Michael Somos_, Sep 24 2003