login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Distance between prime(n) and the largest quadratic residue modulo prime(n).
14

%I #32 Feb 16 2018 08:59:15

%S 1,2,1,3,2,1,1,2,5,1,3,1,1,2,5,1,2,1,2,7,1,3,2,1,1,1,3,2,1,1,3,2,1,2,

%T 1,3,1,2,5,1,2,1,7,1,1,3,2,3,2,1,1,7,1,2,1,5,1,3,1,1,2,1,2,11,1,1,2,1,

%U 2,1,1,7,3,1,2,5,1,1,1,1,2,1,7,1,3,2,1,1,1,3,2,13,3,2,2,5,1,1,2,1

%N Distance between prime(n) and the largest quadratic residue modulo prime(n).

%C a(n) = smallest m>0 such that -m is a quadratic residue modulo prime(n).

%C a(n) = smallest m>0 such that prime(n) either splits or ramifies in the imaginary quadratic field Q(sqrt(-m)). Equals -A220862(n) except when n = 1. Cf. A220861, A220863. - _N. J. A. Sloane_, Dec 26 2012

%C The values are 1 or a prime number (easily provable!). The maximum occurring prime values increase very slowly: up to 10^5 terms the largest prime is 43. The primes do not appear in order.

%D David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105. - From _N. J. A. Sloane_, Dec 26 2012

%H Charles R Greathouse IV, <a href="/A088192/b088192.txt">Table of n, a(n) for n = 1..10000</a>

%H Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>.

%H J. A. Bergstra, I. Bethke, <a href="http://arxiv.org/abs/1507.00548">A negative result on algebraic specifications of the meadow of rational numbers</a>, arXiv preprint arXiv:1507.00548 [math.RA], 2015-2016.

%F a(n) = A053760(n) unless -1 is a quadratic residue mod prime(n). - _Charles R Greathouse IV_, Oct 31 2012

%t a[n_] := With[{p = Prime[n]}, If[JacobiSymbol[-1, p] > 0, 1, For[d = 2, True, d = NextPrime[d], If[JacobiSymbol[-d, p] >= 0, Return[d]]]]]; Array[a, 100] (* _Jean-François Alcover_, Feb 16 2018, after _Charles R Greathouse IV_ *)

%o (PARI) qrp_pm(fr,to)= {/* The distance of largest QR modulo the primes from the primes */ local(m,p,v=[]); for(i=fr,to,m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1),m=max(m,(j^2)%p); j++); v=concat(v,p-m)); print(v) }

%o (PARI) do(p)=if(kronecker(-1,p)>0, 1, forprime(d=2, p, if(kronecker(-d, p) >= 0, return(d))))

%o apply(do, primes(100)) \\ _Charles R Greathouse IV_, Oct 31 2012

%Y Records are (essentially) given by A147971.

%Y Cf. A088190, A088191, A088193, A088194, A088195, A220861, A220862, A220863.

%K easy,nonn

%O 1,2

%A Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003

%E Edited by _Max Alekseyev_, Oct 29 2012