

A088048


Let S(k) be the set of absolute differences of pairs of primes <= k. a(n) is the least k such that S(k) contains all residues mod prime(n).


1



5, 5, 7, 17, 23, 29, 37, 41, 53, 59, 67, 79, 83, 89, 97, 109, 131, 127, 137, 149, 151, 163, 173, 181, 197, 211, 211, 223, 233, 233, 271, 269, 277, 281, 311, 311, 317, 353, 337, 349, 359, 367, 389, 389, 397, 401, 433, 449, 457, 461, 479, 479, 487, 509, 521, 557
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Needs better description.


LINKS

Table of n, a(n) for n=1..56.


EXAMPLE

a(3) = 7, 72==0 (mod 5), 32 ==1 (mod 5), 53 ==2 (mod 5), 52 ==3 (mod 5),
73 == 4 (mod 5).
a(5) = 23 and we have 132 == 0 (mod 11), 32=1, 53=2, 52=3, 73=4, 72 =5, 115 = 6, 235 == 7 (mod 11), 135 = 8, 112 = 9, 133 = 10.


CROSSREFS

Cf. A088046, A088047, A109257.
Sequence in context: A141392 A088047 A109257 * A006146 A284129 A077956
Adjacent sequences: A088045 A088046 A088047 * A088049 A088050 A088051


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Sep 20 2003


EXTENSIONS

More terms from David Wasserman, Jun 23 2005


STATUS

approved



