login
A088042
Number of permutations in the symmetric group S_n such that the size of their conjugacy class is odd.
2
1, 2, 4, 4, 16, 76, 232, 106, 946, 5716, 27776, 63856, 272416, 2390480, 10349536, 2027026, 34459426, 344594404, 2618916472, 10475679736, 54997260256, 568305978472, 3132225435824, 1807129471456, 12047128545376, 175289251587776, 1326384554695552
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} n!/(n-2*k)!/k!/2^k*(C(n-(n mod 2), 2*k) mod 2). - Vladeta Jovovic, Nov 06 2003
MAPLE
a:= n-> n!*add((binomial(n-(n mod 2), 2*k) mod 2)/((n-2*k)!*k!*2^k),
k=0..floor(n/2)):
seq(a(n), n=1..30); # Alois P. Heinz, May 01 2013
MATHEMATICA
a[n_] := n!*Sum[Mod[Binomial[n-Mod[n, 2], 2*k], 2]/((n-2*k)!*k!*2^k), {k, 0, Floor[n/2]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 02 2003
EXTENSIONS
More terms from Vladeta Jovovic, Nov 03 2003
STATUS
approved