login
Integers m such that gcd(2^m+1, m^2) is not a square.
3

%I #20 Jul 15 2024 10:23:11

%S 9,45,50,63,81,99,117,150,153,171,207,225,261,279,315,333,350,369,387,

%T 405,423,441,450,477,495,531,549,550,567,585,603,605,639,650,657,693,

%U 711,729,747,765,801,819,850,855,873,891,909,927,950,963,981,1014,1017

%N Integers m such that gcd(2^m+1, m^2) is not a square.

%H Amiram Eldar, <a href="/A087969/b087969.txt">Table of n, a(n) for n = 1..10000</a>

%e For m = 9: gcd(513, 81) = 27 is not a square number, so 9 is a term.

%t Do[s=Sqrt[GCD[n^2, 2^n+1]]; If[ !IntegerQ[s], Print[n]], {n, 1, 1000}]

%o (PARI) isok(m) = !issquare(gcd(2^m+1, m^2)); \\ _Michel Marcus_, Aug 27 2019

%o (Magma) [m:m in [1..1020]|not IsSquare(Gcd(1+2^m,m^2))]; // _Marius A. Burtea_, Aug 27 2019

%Y Cf. A087968, A087967.

%K nonn

%O 1,1

%A _Labos Elemer_, Sep 22 2003