Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 14 2016 19:21:09
%S 1,1,1,2,6,22,95,463,2483,14426,89799,594038,4150514,30482791,
%T 234428282,1881944298,15729230166,136566166388,1229346044429,
%U 11454129882773,110293243452027,1096078120808889,11227947692444477,118421577443291274,1284625091089249880
%N G.f. satisfies A(x) = 1 + x*A(x*A(x*A(x))).
%H Alois P. Heinz, <a href="/A087959/b087959.txt">Table of n, a(n) for n = 0..100</a>
%p A:= proc(n) option remember; local T; if n=0 then 1 else T:= A(n-1); unapply(convert(series(1+ x*T(x*T(x*T(x))), x, n+1), polynom), x) fi end: a:= n-> coeff(A(n)(x), x, n): seq(a(n), n=0..21); # _Alois P. Heinz_, Aug 23 2008
%t A[n_] := A[n] = Module[{T}, If[n == 0, 1, T[y_] = A[n-1][y]; Normal[Series[1+x*T[x*T[x*T[x]]], {x, 0, n+1}]] /. x -> #]&]; a[n_] := Coefficient[A[n][x], x, n]; Table [a[n], {n, 0, 24}] (* _Jean-François Alcover_, Feb 14 2014, after _Alois P. Heinz_ *)
%Y Cf. A087949.
%K nonn
%O 0,4
%A _Paul D. Hanna_, Sep 16 2003