login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential generating function is exp(2*x/(1-x))/(1-x).
21

%I #42 Sep 08 2022 08:45:11

%S 1,3,14,86,648,5752,58576,671568,8546432,119401856,1815177984,

%T 29808908032,525586164736,9898343691264,198227905206272,

%U 4204989697906688,94163381359509504,2219240984918720512,54898699229094412288,1422015190821016633344,38484192401958599131136

%N Exponential generating function is exp(2*x/(1-x))/(1-x).

%H Vincenzo Librandi, <a href="/A087912/b087912.txt">Table of n, a(n) for n = 0..200</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Generating_functions#Exponential_generating_functions">Exponential generating functions</a>.

%F E.g.f.: exp(2*x/(1-x))/(1-x). - _M. F. Hasler_, Sep 30 2012

%F a(n) = n!*LaguerreL(n, -2).

%F a(n) = Sum_{k=0..n} 2^k*(n-k)!*binomial(n, k)^2.

%F E.g.f.: exp(x) * Sum_{n>=0} 2^n*x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. [_Paul D. Hanna_, Nov 18 2011]

%F a(n) ~ n^(n+1/4)*exp(2*sqrt(2*n)-n-1)*2^(-3/4). - _Vaclav Kotesovec_, Sep 29 2012

%F Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(2*n))) = exp(-1). - _Vaclav Kotesovec_, Oct 12 2016

%F a(n) = n! * A160615(n)/A160616(n). - _Alois P. Heinz_, Jun 28 2017

%F D-finite with recurrence: a(n) +(-2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Feb 21 2020

%p a := proc(n) option remember: if n<1 then 1 else (2*n+1)*a(n-1) - (n-1)^2*a(n-2) fi end: 'a(n)'$n=0..17; # _Zerinvary Lajos_, Sep 26 2006; corrected by _M. F. Hasler_, Sep 30 2012

%t Table[n! SeriesCoefficient[E^(2*x/(1-x))/(1-x), {x, 0, n}], {n, 0, 20}] (* _Vincenzo Librandi_, May 10 2013 *)

%t Table[n!*LaguerreL[n, -2], {n, 0, 30}] (* _G. C. Greubel_, May 16 2018 *)

%o (PARI) A087912(n)={n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,2^m*x^m/m!^2) ,n)} \\ _Paul D. Hanna_, Nov 18 2011

%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(2*x/(1-x))/(1-x))) \\ _Joerg Arndt_, May 10 2013

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 16 2018

%Y Cf. A002720, A274246, A277372.

%Y Column k=2 of A289192.

%Y Cf. A160615, A160616.

%K nonn

%O 0,2

%A _Vladeta Jovovic_, Oct 18 2003

%E Several minor edits by _M. F. Hasler_, Sep 30 2012