login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087809 Number of triangulations (by Euclidean triangles) having 3+3n vertices of a triangle with each side subdivided by n additional points. 0

%I #42 Oct 18 2020 03:38:37

%S 1,4,29,229,1847,14974,121430,983476,7952111,64193728,517447289,

%T 4165721377,33500374796,269166095800,2161064409680,17339917293304,

%U 139060729285871,1114752741216196,8933074352513183,71564554425680839

%N Number of triangulations (by Euclidean triangles) having 3+3n vertices of a triangle with each side subdivided by n additional points.

%H Andrei Asinowski, Christian Krattenthaler, Toufik Mansour, <a href="http://arxiv.org/abs/1604.02870">Counting triangulations of some classes of subdivided convex polygons</a>, European Journal of Combinatorics 62 (2017), 92-114; arXiv:1604.02870 [math.CO], 2016. See also <a href="https://web.archive.org/web/20171109075721/http://discretemath.upc.edu/jmda16/wp-content/uploads/2015/09/JMDA2016_paper_15.pdf">preprint</a>, 2016.

%H R. Bacher, <a href="http://arxiv.org/abs/math.CO/0310206">Counting Triangulations of Configurations</a>, arXiv:math/0310206 [math.CO], 2003.

%F A formula is given in the Bacher reference.

%F It seems that a(n) = Sum_{i, j, k>=0} C(n, i+j)*C(n, j+k)*C(n, k+i)). - _Benoit Cloitre_, Oct 25 2004; proved in the article by Asinowski et al.

%F G.f.: seems to be (10*g^3 - 17*g^2 + 7*g - 1)/((1-3*g)*(2*g-1)*(4*g^2 - 6*g+1)) where g*(1-g)^2 = x. - _Mark van Hoeij_, Nov 10 2011; proved in the article by Asinowski et al.

%F Conjecture: 2*n*(2*n-1)*(5*n^2 - 29*n + 30)*a(n) + (-295*n^4 + 1926*n^3 - 3425*n^2 + 2106*n - 360)*a(n-1) + 24*(3*n-4)*(3*n-5)*(5*n^2 - 19*n + 6)*a(n-2) = 0. - _R. J. Mathar_, Apr 23 2015. Proved by Andrei Asinowski, C. Krattenthaler, T. Mansour, Counting triangulations of balanced subdivisions of convex polygons, 2016.

%e a(0)=1 since there is only one triangulation of a triangle (consisting of the triangle itself).

%e The a(1)=4 triangulations of a triangle with each side subdivided by one additional point are given by

%e .

%e O O

%e / \ /|\

%e O _ O O O

%e / \ / \ / \|/ \

%e O _ O _ O , O _ O _ O

%e .

%e and rotations by 120 degrees and 240 degrees of the last triangulation.

%t max = 19; f[x_] := Sum[ a[n]*x^n, {n, 0, max}]; a[0] = 1; g[x_] := Sum[ b[n]*x^n, {n, 0, max}]; b[0] = 0; coes = CoefficientList[ Series[ g[x]*(1 - g[x])^2 - x, {x, 0, max}], x]; solb = Solve[ Thread[ coes == 0]][[1]]; coes = CoefficientList[ Series[ f[x] - ((10*g[x]^3 - 17*g[x]^2 + 7*g[x] - 1)/((1 - 3*g[x])*(2*g[x] - 1)*(4*g[x]^2 - 6*g[x] + 1))), {x, 0, max}], x] /. solb; sola = Solve[ Thread[ coes == 0]][[1]]; Table[a[n] /. sola, {n, 0, max}] (* _Jean-François Alcover_, Dec 06 2011, after _Mark van Hoeij_ *)

%K nonn,nice

%O 0,2

%A _Roland Bacher_, Oct 16 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 15:20 EDT 2024. Contains 371916 sequences. (Running on oeis4.)