login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions to x^2 + y^2 + z^2 = 1 mod n.
12

%I #26 Oct 18 2022 07:27:09

%S 1,4,6,24,30,24,42,96,54,120,110,144,182,168,180,384,306,216,342,720,

%T 252,440,506,576,750,728,486,1008,870,720,930,1536,660,1224,1260,1296,

%U 1406,1368,1092,2880,1722,1008,1806,2640,1620,2024,2162,2304,2058,3000

%N Number of solutions to x^2 + y^2 + z^2 = 1 mod n.

%H Michael De Vlieger, <a href="/A087784/b087784.txt">Table of n, a(n) for n = 1..10000</a>

%H László Tóth, <a href="http://arxiv.org/abs/1404.4214">Counting solutions of quadratic congruences in several variables revisited</a>, arXiv preprint arXiv:1404.4214 [math.NT], 2014.

%H László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Toth/toth12.html">Counting Solutions of Quadratic Congruences in Several Variables Revisited</a>, Journal of Integer Sequences, 17 (2014), Article 14.11.6.

%F a(n) = n^2 * (3/2 if 4|n) * Product_{primes p == 1 mod 4 dividing n} (1+1/p) * Product_{primes p == 3 mod 4 dividing n} (1-1/p). - Bjorn Poonen, Dec 09 2003

%F Sum_{k=1..n} a(k) ~ c * n^3 + O(n^2 * log(n)), where c = 36*G/Pi^4 = 0.338518..., where G is Catalan's constant (A006752) (Tóth, 2014). - _Amiram Eldar_, Oct 18 2022

%t Table[With[{f = FactorInteger[n][[All, 1]]}, Apply[Times, Map[1 + 1/# &, Select[f, Mod[#, 4] == 1 &]]] Apply[Times, Map[1 - 1/# &, Select[f, Mod[#, 4] == 3 &]]] (1 + Boole[Divisible[n, 4]]/2) n^2] - Boole[n == 1], {n, 50}] (* _Michael De Vlieger_, Feb 15 2018 *)

%o (PARI) a(n) = {my(f=factor(n)); if ((n % 4), 1, 3/2)*n^2*prod(k=1, #f~, p = f[k,1]; m = p % 4; if (m==1, 1+1/p, if (m==3, 1-1/p, 1)));} \\ _Michel Marcus_, Feb 14 2018

%Y Cf. A006752, A060968, A087687, A208895, A264083.

%K nonn,mult

%O 1,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 06 2003

%E More terms from _David Wasserman_, Jun 17 2005