%I #18 Jan 08 2024 09:01:15
%S 0,1,1,2,4,7,9,12,14,17,19,22,26,31,35,40,46,53,59,66,74,83,91,100,
%T 108,117,125,134,144,155,165,176,186,197,207,218,230,243,255,268,280,
%U 293,305,318,332,347,361,376,392,409,425,442,460,479,497,516,534,553,571
%N Partial sums of A068639.
%H J.-P. Allouche and J. Shallit, <a href="http://www.math.jussieu.fr/~allouche/kreg2.ps">The Ring of k-regular Sequences, II</a>
%H J.-P. Allouche and J. Shallit, <a href="https://doi.org/10.1016/S0304-3975(03)00090-2">The ring of k-regular sequences, II</a>, Theoret. Computer Sci., 307 (2003), 3-29.
%H Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications</a>, Preprint, 2016.
%H Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, 13:4 (2017), #47.
%F a(0)=0, a(2n+1) = -a(n)-a(n+1)+n^2+n, a(2n+1) = -2a(n)+n^2+2n+1. - _Ralf Stephan_, Oct 16 2003
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Oct 01 2003
%E More terms from _Benoit Cloitre_, Oct 04 2003