Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Oct 01 2024 13:17:05
%S 1,1,2,11,3,12,4,111,22,13,5,112,6,14,23,1111,7,122,8,113,24,15,9,
%T 1112,33,16,222,114,10,123,11,11111,25,17,34,1122,12,18,26,1113,13,
%U 124,14,115,223,19,15,11112,44,133,27,116,16,1222,35,1114,28,110,17,1123,18
%N a(1) = 1; if n = k-th prime, a(n) = k; otherwise write all prime factors of n in nondecreasing order, replace each prime with its rank, and concatenate the ranks.
%C Concatenations of consecutive entries of A112798. - _R. J. Mathar_, Feb 09 2009
%C The old entry with this A-number was a duplicate of A082467.
%H Reinhard Zumkeller, <a href="/A087712/b087712.txt">Table of n, a(n) for n = 1..10000</a>
%e n = 2 = first prime, a(2) = 1.
%e n = 3 = second prime, a(3) = 2.
%e n = 4 = 2*2 -> 1,1 -> 11, so a(4) = 11.
%e n = 6 = 2*3 -> 1,2 -> 12, so a(6) = 12.
%e n = 12 = 2*2*3 -> 1,1,2 -> 112, so a(12) = 112.
%p # Maple program from _R. J. Mathar_, Feb 08 2009: (Start)
%p cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end:
%p A049084 := proc(p) if isprime(p) then numtheory[pi](p) ; else 0 ; fi; end:
%p A087712 := proc(n) local pf,a,p,ex ; if isprime(n) then A049084(n) ; elif n = 1 then 1 ; else pf := ifactors(n)[2] ; a := 0 ; for p in pf do for ex from 1 to op(2,p) do a := cat2(a, A049084(op(1,p)) ) ; od: od: fi; end:
%p seq(A087712(n),n=1..140); # (End)
%p # (Maple program from _David Applegate_ and _N. J. A. Sloane_, Feb 09 2009)
%p with(numtheory):
%p f := proc(n) local t1, v, r, x, j;
%p if (n = 1) then return 1; end if;
%p t1 := ifactors(n): v := 0;
%p for x in op(2,t1) do r := pi(x[1]):
%p for j from 1 to x[2] do
%p v := v * 10^length(r) + r;
%p end do; end do; v; end proc;
%t f[n_] := If[n == 1, 1, FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@ n])]]; Array[f, 61] (* _Robert G. Wilson v_, Jun 06 2011 *)
%o (Haskell)
%o a087712 1 = 1
%o a087712 n = read $ concatMap (show . a049084) $ a027746_row n :: Integer
%o -- _Reinhard Zumkeller_, Oct 03 2012
%o (Python)
%o from sympy import factorint, primepi
%o def a(n):
%o if n == 1: return 1
%o return int("".join(str(primepi(p))*e for p, e in factorint(n).items()))
%o print([a(n) for n in range(1, 62)]) # _Michael S. Branicky_, Oct 01 2024
%Y See A098282 for lengths of trajectories. Cf. A077960, A156055.
%Y Cf. A027746, A049084.
%K nonn,base,look
%O 1,3
%A _Eric Angelini_, Feb 02 2009
%E More terms from _R. J. Mathar_ (Feb 08 2009) and independently from _David Applegate_ and _N. J. A. Sloane_, Feb 09 2009