login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that both k+2 and k-2 are prime.
20

%I #34 Apr 06 2017 02:42:55

%S 5,9,15,21,39,45,69,81,99,105,111,129,165,195,225,231,279,309,315,351,

%T 381,399,441,459,465,489,501,615,645,675,741,759,771,825,855,861,879,

%U 885,909,939,969,1011,1089,1095,1215,1281,1299,1305,1425,1431,1449,1485

%N Numbers k such that both k+2 and k-2 are prime.

%C Essentially the same as A029708: a(n) = A029708(n-1) for n>=2.

%C Midpoint of cousin prime pairs.

%C The only prime is 5. All other terms are multiples of 3. - _Zak Seidov_, May 19 2014

%H M. F. Hasler, <a href="/A087679/b087679.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CousinPrimes.html">Cousin Primes</a>

%F a(n) = (A023200(n) + A046132(n))/2 = A023200(n) + 2 = A046132(n) - 2.

%F a(n+1) = A056956(n)*6 + 3 = A157834(n)*3; a(n) = A088762(n)*2 + 1. - _M. F. Hasler_, Apr 05 2017

%p ZL:=[]:for p from 1 to 1485 do if (isprime(p) and isprime(p+4) ) then ZL:=[op(ZL),(p+(p+4))/2]; fi; od; print(ZL); # _Zerinvary Lajos_, Mar 07 2007

%t lst={};Do[If[PrimeQ[n-2]&&PrimeQ[n+2],AppendTo[lst,n]],{n,3,8!,2}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 14 2009 *)

%o (PARI) s=[]; for(n=1, 2000, if(isprime(n-2) && isprime(n+2), s=concat(s, n))); s \\ _Colin Barker_, May 19 2014

%o (PARI) is_A087679(n)={isprime(n-2) && isprime(n+2)} \\ For numbers >> 10^12 one should add conditions {n%6==3 && ... || n==5} or consider only such numbers congruent to 3 (mod 6). - _M. F. Hasler_, Apr 05 2017

%Y Cf. A014574, A087678-A087683, A087695-A087697, A088762.

%K nonn,easy

%O 1,1

%A _Zak Seidov_, Sep 27 2003

%E More terms from _Ray Chandler_, Oct 26 2003