Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 03 2022 13:40:33
%S 1,6,57,701,10147,164317,2888282,54047434,1062530119,21739192762,
%T 459685114665,9993072855135,222421656113435,5052215132332492,
%U 116808526607319823,2742986603349411311,65306671610636210891,1574090246599071243962,38361262640988126803839
%N a(n) = hypergeom([ -n, (n+4)/2, (n+5)/2], [3, 2], -4).
%C From _Bill Gosper_, Feb 04 2004: (Start)
%C A few weeks ago I conjectured that 2 binomial(n,i) (n+2i+3)! / ((i+1)!(i+2)!(n+3)!) is always an integer (summed on i, this gives the current sequence).
%C This is the special case C(3,i,n-i) of C(m,k,n) := (n+k)!(n+m)!/(n!(n+m+k)!) * Product_{j=1..k} (j - 1)! (n + j m + m)!/((m + j - 1)! (n + j m)!)
%C which I also conjecture integral.
%C (End)
%C From Alec Mihailovs, Feb 04 2004: (Start)
%C These conjectures are true. Consider the partition p(m,k,n)=(n+m,m,...,m) of n+m*(k+1), where m is repeated k times. It is easy to see that C(m,k,n) equals the dimension of the irreducible representation of S_(n+m*(k+1)) corresponding to p(m,k,n) calculated using hook length formula.
%C Another formula for C(m,k,n) is ((n+mk+m)!/n!) * Product_{i=0..m-1} i!/((k+i)!(n+k+i+1)!).
%C (End)
%C Cloitre has characterized the sequence mods 2 and 3. Remarkably, a(9k+6) mod 3 = 2*A014578(k+1), the binary expansion of the "Thue constant", 110110111110110111110110110..., wherein the 3n-th bit is the complement of the n-th. - _Bill Gosper_, Mar 19 2004
%F a(n) = Sum _{i=0..n} 2*C(n,i) * (n+2*i+3)! / ( (i+1)! * (i+2)! * (n+3)! ).
%F From _Vaclav Kotesovec_, Jul 05 2018: (Start)
%F D-finite with Recurrence: (n+2)^2*(n+3)*(3*n - 1)*a(n) = 2*(n+2)*(3*n + 1)*(15*n^2 + 5*n - 2)*a(n-1) - (n-1)*(9*n^3 - 3*n^2 - 4*n - 4)*a(n-2) + (n-3)*(n-2)*(n-1)*(3*n + 2)*a(n-3).
%F a(n) ~ sqrt(957 + 1/3*(5/2*(9465769685 - 18403*sqrt(5)))^(1/3) + 1/3*(5/2*(9465769685 + 18403*sqrt(5)))^(1/3)) * (66 + 10*2^(2/3)*(73 + sqrt(5))^(1/3) + 3*2^(1/3)*(73 + sqrt(5))^(2/3))^n / (Pi * n^4 * 2^(2*n/3) * (73 + sqrt(5))^(n/3)). (End)
%t a[n_] := HypergeometricPFQ[{-n, (n + 4)/2, (n + 5)/2}, {3, 2}, -4];
%t Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Feb 19 2018 *)
%o (PARI) a(n)= sum(i=0,n,2*binomial(n,i)*(n+2*i+3)!/((i+1)!*(i+2)!*(n+3)!)) \\ _Benoit Cloitre_
%o (Sage)
%o def A087659():
%o x, y, z, n = 1, 6, 57, 2
%o while True:
%o yield x
%o n += 1
%o x, y, z = y, z, ((n-1)*(n-2)*(n-3)*(3*n+2)*x-(n-1)*(9*n^3-3*n^2-4*n-4)*y+(2*(3*n+1))*(n+2)*(15*n^2+5*n-2)*z)/((n+3)*(3*n-1)*(n+2)^2)
%o a = A087659()
%o [next(a) for i in range(19)] # _Peter Luschny_, Oct 12 2013
%Y Row sums of triangle A087727. Cf. A087660-A087662.
%K nonn
%O 0,2
%A _Bill Gosper_, Sep 26 2003
%E More terms from _Benoit Cloitre_, Sep 26 2003