login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087579 a(n)=(1/6)*sum(k=0,n,binomial(n,k)*Fibonacci(k)*6^k). 1
1, 8, 93, 976, 10505, 112344, 1203397, 12885152, 137979729, 1477507240, 15821470061, 169419470448, 1814178395353, 19426591805816, 208023907911765, 2227562425662784, 23853192734743457, 255424852222168392, 2735141407084907389, 29288451971122142480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..19.

Index entries for linear recurrences with constant coefficients, signature (8,29).

FORMULA

a(n)=8*a(n-1)+29*a(n-2)

a(n)=(1/2)*[4-3*sqrt(5)]^n-(2/15)*[4-3*sqrt(5)]^n*sqrt(5)+(2/15)*[4+3*sqrt(5)]^n*sqrt(5)+(1 /2)*[4+3*sqrt(5)]^n, with n>=0 - Paolo P. Lava, Jun 25 2008

G.f.: 1 / (-29*x^2-8*x+1). - Colin Barker, Aug 08 2013

MATHEMATICA

Join[{b=1}, a=0; Table[c=8*b+29*a; a=b; b=c, {n, 30}]] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)

LinearRecurrence[{8, 29}, {1, 8}, 20] (* Harvey P. Dale, Mar 22 2019 *)

CROSSREFS

Cf. A014445, A057088, A015553.

Sequence in context: A184142 A137159 A099291 * A194043 A122419 A319176

Adjacent sequences:  A087576 A087577 A087578 * A087580 A087581 A087582

KEYWORD

nonn,easy

AUTHOR

Benoit Cloitre, Oct 25 2003

EXTENSIONS

More terms from Colin Barker, Aug 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 07:40 EST 2020. Contains 338868 sequences. (Running on oeis4.)