login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form primorial(P(k))/2-2.
4

%I #13 Oct 01 2013 17:57:43

%S 13,103,1153,15013,255253,4849843,111546433,100280245063,

%T 152125131763603,16294579238595022363,278970415063349480483707693,

%U 11992411764462614086353260819346129198103,481473710367991963528473107950567214598209565303106537707981745633

%N Primes of the form primorial(P(k))/2-2.

%C Twinmorial numbers are the partial products of twin primes. Sum of reciprocals = 0.08756985926348207565388288916..

%C The next term (a(14)) has 174 digits. - _Harvey P. Dale_, Mar 30 2013

%H Charles R Greathouse IV, <a href="/A087398/b087398.txt">Table of n, a(n) for n = 1..19</a>

%F Twins 3*5 = 15 = p+2. p=13.

%t Select[#/2-2&/@Rest[FoldList[Times,1,Prime[Range[100]]]],PrimeQ] (* _Harvey P. Dale_, Mar 30 2013 *)

%o (PARI) twimorial(n) = { s=0; p=3; forprime(x=5,n, if(isprime(x-2),c1++); p=p*x; if(isprime(p-2), print1(p-2","); c2++; s+=1.0/(p-2); ) ); print(); print(s) }

%o (PARI) v=[];pr=1; forprime(p=3,2357,pr*=p; if(ispseudoprime(pr-2),v=concat(v,pr-2))) \\ _Charles R Greathouse IV_, Feb 14 2011

%Y Cf. A096177 primes k such that primorial(k)/2+2 is prime, A096178 primes of the form primorial(k)/2+2, A096547 Primes k such that primorial(k)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes.

%K nonn

%O 1,1

%A _Cino Hilliard_, Oct 21 2003

%E Description corrected by _Hugo Pfoertner_, Jun 25 2004

%E One more term (a(13)) added by _Harvey P. Dale_, Mar 30 2013