login
a(n+1) is the smallest prime > a(n) such that a(n+1) - a(n) == 0 (mod n^n).
1

%I #11 Apr 03 2024 21:24:42

%S 2,3,7,61,317,31567,218191,34806997,101915861,3201279773,143201279773,

%T 13838161469101,85166965055149,3113918030977679,36449938507651727,

%U 6166964403839682977,264421381435773405601,36662992904434591029389,430127073657399966783629,24171162941581163036271377

%N a(n+1) is the smallest prime > a(n) such that a(n+1) - a(n) == 0 (mod n^n).

%H Robert Israel, <a href="/A087358/b087358.txt">Table of n, a(n) for n = 1..385</a>

%e a(4)-a(3) = 61-7 = 54 == 0 (mod 3^3).

%p A[1]:= 2: A[2]:= 3:

%p for n from 2 to 25 do

%p if n::odd then d:= 2*n^n else d:= n^n fi;

%p for v from A[n] + d by d do

%p if isprime(v) then A[n+1]:= v; break fi

%p od od:

%p seq(A[i],i=1..26); # _Robert Israel_, Apr 03 2024

%K nonn

%O 1,1

%A _Amarnath Murthy_, Sep 08 2003

%E Corrected and extended by _David Wasserman_, May 12 2005

%E Name corrected and more terms from _Robert Israel_, Apr 03 2024