login
A087209
Numbers k such that k^2 = x^3 + y^4 with positive integers x, y.
1
3, 29, 45, 76, 162, 192, 397, 405, 612, 650, 1025, 1098, 1275, 1856, 2064, 2160, 2187, 2880, 3420, 4864, 5499, 6831, 6875, 8775, 9072, 10368, 12288, 12348, 15000, 21096, 21141, 25408, 25920, 26811, 29079, 30600, 30758, 32805, 33957, 36875, 39168
OFFSET
1,1
COMMENTS
There are an infinite number of solutions. Parametrizations are given at the Alpern link.
EXAMPLE
3 is a term because 3^2 = 2^3 + 1^4.
45 is a term because 45^2 = 9^3 + 6^4 = 729 + 1296 = 2025.
CROSSREFS
Cf. A087210, solutions with gcd (n, x, y)=1.
Sequence in context: A341210 A106979 A367102 * A165440 A072306 A303137
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 26 2003
STATUS
approved