login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087171
Expansion of (1 + 5*x)/(1 + 9*x + 25*x^2).
0
1, -4, 11, 1, -284, 2531, -15679, 77836, -308549, 831041, 234356, -22885229, 200108161, -1228842724, 6056880491, -23790856319, 62695694596, 30510156611, -1841983774399, 15815100054316, -96286306128869, 471199253801921, -1833635630995564, 4722739333912051
OFFSET
0,2
COMMENTS
For positive n, a(n) equals the 5^n times the permanent of the (2n) X (2n) tridiagonal matrix with 1/sqrt(5)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (where i is the imaginary unit). - John M. Campbell, Jul 08 2011
FORMULA
G.f.: (1 + 5*x)/(1 + 9*x + 25*x^2).
a(n) = -9*a(n-1) - 25*a(n-2), a(0)=1, a(1)=-4.
a(n) = Sum_{k=0..n} binomial(n+k,2*k)*(-5)^(n-k).
MATHEMATICA
CoefficientList[Series[(1 + 5x)/(25x^2 + 9x + 1), {x, 0, 25}], x]
LinearRecurrence[{-9, -25}, {1, -4}, 30] (* Harvey P. Dale, Sep 10 2017 *)
CROSSREFS
Sequence in context: A091389 A175668 A113249 * A282026 A066333 A230870
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2003
STATUS
approved