login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087115 Convolution of sum of cubes of divisors with itself. 3

%I

%S 0,1,18,137,650,2350,6860,17609,39870,83976,162382,301070,522886,

%T 885284,1424468,2254537,3419448,5143987,7448874,10750712,15015872,

%U 20948610,28373444,38539022,50863150,67454492,87209316,113326308,143748766,183759900,229271536

%N Convolution of sum of cubes of divisors with itself.

%C Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

%D J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chap. VII, Section 4., p. 93.

%H Seiichi Manyama, <a href="/A087115/b087115.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: (Sum_{k>0} k^3 * x^k / (1 - x^k))^2.

%F a(n) = (sigma_7(n) - sigma_3(n)) / 120.

%F G.f.: ((Q(x) - 1) / 240)^2 where Q() is a Ramanujan Eisenstein series.

%e G.f. = x^2 + 18*x^3 + 137*x^4 + 650*x^5 + 2350*x^6 + 6860*x^7 + 17609*x^8 + ...

%p with(numtheory); f:=n->add( sigma[3](k)*sigma[3](n-k),k=1..n-1);

%t a[ n_] := If[ n < 1, 0, (DivisorSigma[ 7, n] - DivisorSigma[ 3, n]) / 120]; (* _Michael Somos_, Oct 08 2017 *)

%o (PARI) {a(n) = if( n<1, 0, (sigma(n, 7) - sigma(n, 3)) / 120)};

%o (PARI) {a(n) = if( n<1, 0, sum(m=1, n-1, sigma(m, 3) * sigma(n-m, 3)))};

%Y Cf. A004009.

%Y Cf. A001158 (sigma_3), A013955 (sigma_7). [_Ridouane Oudra_, Apr 22 2020]

%K nonn

%O 1,3

%A _Michael Somos_, Aug 13 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 07:14 EST 2020. Contains 338607 sequences. (Running on oeis4.)