%I #16 Jul 15 2014 13:01:28
%S 6,0,3,2,4,4,2,8,1,2,0,9,4,4,6,2,0,6,1,9,1,4,2,9,2,2,4,5,3,4,7,0,2,0,
%T 7,9,8,8,3,0,0,3,4,2,0,3,8,9,4,5,9,7,6,5,3,8,7,7,6,9,2,0,4,1,1,9,4,3,
%U 2,7,8,5,6,7,9,3,3,5,2,9,0,7,4,8,2,9,8,6,8,8,3,6,9,8,7,3,7,4,1,4,5,4
%N Decimal expansion of G(1/2) where G is the Barnes G-function.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.
%H Junesang Choi, <a href="http://dx.doi.org/10.1006/jmaa.1998.6216">Certain classes of series involving the zeta function</a>, J. Math. Anal. Applic. 231 (1999) 91-117.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>
%e 0.60324...
%t (2^(1/24)*E^(1/8))/(Glaisher^(3/2)*Pi^(1/4))
%t (* Or, since version 7.0, *) RealDigits[BarnesG[1/2], 10, 102] // First (* _Jean-François Alcover_, Jul 11 2014 *)
%o (PARI) 2^(1/24)*exp(3/2*zeta'(-1))/Pi^(1/4) \\ _Charles R Greathouse IV_, Dec 12 2013
%Y Cf. A087013, A087015, A087016, A087017, A074962.
%K nonn,cons
%O 0,1
%A _Eric W. Weisstein_, Jul 30 2003