login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086909
Middle side of the first primitive d-arithmetic triangle, where d=A072330(n).
10
4, 26, 28, 52, 76, 98, 124, 134, 158, 148, 172, 206, 218, 266, 244, 316, 292, 362, 388, 388, 364, 364, 386, 398, 518, 556, 494, 532, 556, 508, 532, 602, 602, 628, 724, 676, 758, 746, 734, 854, 916, 806, 868, 916, 844, 892, 866, 868, 1036, 1022, 988, 964, 974
OFFSET
1,1
REFERENCES
J. A. MacDougall, "Heron Triangles With Sides In Arithmetic Progression", Journal of Recreational Mathematics 31(3) 2002-2003, pp. 192-194.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..1000
J. A. MacDougall, Heron Triangles With Sides In Arithmetic Progression, ResearchGate, 2005.
MATHEMATICA
terms = 1000;
nmax = 12 terms;
okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&];
A072330 = Select[Range[nmax], okQ];
a[n_] := Module[{a, b, c, d, p}, d = If[n <= Length[A072330], A072330[[n]], Print["nmax = ", nmax, " insufficient"]; Exit[]]; If[n==1, 4, For[b = 2d, True, b++, a = b-d; c = b+d; p = (a+b+c)/2; If[IntegerQ[p] && IntegerQ[ Sqrt[p(p-a)(p-b)(p-c)]] && GCD[a, b, c] == 1, Return[b]]]]];
a /@ Range[terms] (* Jean-François Alcover, Mar 06 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Sep 19 2003
EXTENSIONS
Extended by Ray Chandler, Jul 03 2004
STATUS
approved