login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ljungstrand's sequence: number of distinct solutions to n = (X + 1/x)(Y + 1/y), where x,y > 1 and X,Y are integers.
1

%I #27 Mar 09 2019 00:45:22

%S 0,1,2,3,4,5,5,6,8,8,8,9,8,10,14,12,10,11,10,14,17,14,13,16,18,13,17,

%T 21,13,19,12,14,23,16,26,26,14,17,21,26,16,23,16,22,30,22,18,22,24,22,

%U 26,23,18,28,33,32,29,21,20,32,19,19,30,30,35,27,18,28,31,41,20,33,19

%N Ljungstrand's sequence: number of distinct solutions to n = (X + 1/x)(Y + 1/y), where x,y > 1 and X,Y are integers.

%C a(n) < n and lim_{n->inf} (Sum_{k=1..n} a(k)) / (n*log(n)^3) = 3/(2*Pi^2) (see article).

%H David A. Corneth, <a href="/A086886/b086886.txt">Table of n, a(n) for n = 1..10000</a>

%H J. Brzezinski, W. Holsztynski and P. Kurlberg, <a href="https://arxiv.org/abs/math/0308194">On the congruence ax+by=1 modulo xy</a>, arXiv:math/0308194 [math.NT], 2003.

%H David A. Corneth, <a href="/A086886/a086886.gp.txt">List of distinct solutions for a(n) where n = 1..300</a>

%e 10 = (1+1/19)(9+1/2) = (3+1/13)(3+1/4) = (1+1/14)(9+1/3) = (3+1/8)(3+1/5) = (1+1/11)(9+1/6) = (1+1/5)(8+1/3) = (1+1/3)(7+1/2) = (1+1/10)(9+1/11). These are all 8 distinct such expressions for 10 so a(10) = 8. - _David A. Corneth_, Feb 18 2019

%t w[n_] := Module[{ant = 0}, Do[For[X = 1, X <= Floor[Sqrt[n]], X++, Do[If[ GCD[n-k, X] != X || GCD[n/a + (n-k)/X, k] != k, Continue[]]; Y = (n-k)/X; x = (n/a + (n-k)/X)/k; y = (a+X)/k; If[x == 1 || y == 1, Continue[]]; If[ X == Y, ant = ant+1/2, ant = ant+1], {k, Divisors[a+X]}]], {a, Divisors[n] }]; ant]; Array[w, 73] (* _Jean-François Alcover_, Feb 18 2019, translated from PARI *)

%o (PARI) a(n)=ant=0; fordiv(n, d, for(X=1, floor(sqrt(n)), fordiv(d+X, k, if(gcd(n-k, X)!=X||gcd(n/d+(n-k)/X, k)!=k, next); Y=(n-k)/X; x=(n/d+(n-k)/X)/k; y=(d+X)/k; if(x==1||y==1, next); if(X==Y, ant=ant+1/2, ant=ant+1)))); ant \\ Juliusz Brzezinski

%K nonn

%O 1,3

%A _Ralf Stephan_, Aug 22 2003; revised Dec 08 2004