login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n with exactly 3 rising or falling successions.
6

%I #13 Apr 09 2014 09:51:19

%S 0,0,0,0,2,16,120,888,7198,64968,650644,7165200,86059242,1119549472,

%T 15682257872,235336043976,3766695159030,64052134910168,

%U 1153211148654348,21915344800505888,438380075974889154,9207290871553008240,202585136417883766472,4659950328485470292632

%N Number of permutations of length n with exactly 3 rising or falling successions.

%C Permutations of 12...n such that exactly 3 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%D J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.

%H Alois P. Heinz, <a href="/A086854/b086854.txt">Table of n, a(n) for n = 0..200</a>

%F Coefficient of t^3 in S[n](t) defined in A002464.

%F Recurrence (for n>4): (n-4)*(2*n^6 - 52*n^5 + 557*n^4 - 3136*n^3 + 9740*n^2 - 15727*n + 10242)*a(n) = (n-4)*(2*n^7 - 50*n^6 + 511*n^5 - 2693*n^4 + 7450*n^3 - 9041*n^2 - 157*n + 6666)*a(n-1) - (2*n^8 - 58*n^7 + 735*n^6 - 5289*n^5 + 23430*n^4 - 64575*n^3 + 106105*n^2 - 92312*n + 30900)*a(n-2) - (2*n^7 - 54*n^6 + 615*n^5 - 3795*n^4 + 13554*n^3 - 27681*n^2 + 29473*n - 12330)*(n-2)*a(n-3) + (2*n^6 - 40*n^5 + 327*n^4 - 1388*n^3 + 3184*n^2 - 3675*n + 1626)*(n-2)^2*a(n-4). - _Vaclav Kotesovec_, Aug 11 2013

%F a(n) ~ 4/3*exp(-2) * n! = n! * 0.45231366335478... - _Vaclav Kotesovec_, Aug 11 2013

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p a:= n-> coeff(S(n), t, 3):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 11 2013

%t S[n_] := S[n] = If[n < 4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 3]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Apr 09 2014, after _Alois P. Heinz_ *)

%Y Cf. A002464, A000130, A000349, A001267, A086852, A086853. A diagonal of A001100.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Aug 19 2003