login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086844
Odd numbers m such that the sequence defined by b(1) = m; for k>1, b(k) = floor((1+sqrt(3))*b(k-1)) contains only odd numbers.
4
5, 7, 13, 19, 21, 27, 29, 35, 37, 43, 49, 51, 57, 59, 65, 67, 71, 73, 79, 81, 87, 89, 95, 97, 101, 103, 109, 111, 117, 119, 125, 131, 133, 139, 141, 147, 149, 155, 161, 163, 169, 171, 177, 179, 183, 185, 191, 193, 199, 201, 207, 213, 215, 221, 223, 229, 231, 237
OFFSET
1,1
COMMENTS
Conjecture: let r(z)= (1/2) *(z+sqrt(z^2+4*z)), for any integral z>=1. Then the sequence a(n)-4n (where a(n) is the sequence of odd numbers m such that the sequence defined by b(1) = m; for k>1, b(k) = floor(r(z)*b(k-1)) contains only odd numbers) becomes ultimately periodic. Benoit Cloitre, Aug 10 2003
FORMULA
Observation: a(n+1)-a(n) = 2, 4 or 6 for every n, a(n)=4n+O(1) and more precisely it seems that abs(a(n)-4n)<=9. Is the sequence a(n)-4n ultimately periodic ? Benoit Cloitre, Aug 10 2003
EXAMPLE
For m = 5 we get 5, 13, 35, 95, 259, 707, 1931, 5275, 14411, 39371, ... (cf. A057960).
CROSSREFS
Cf. A086843.
Sequence in context: A336581 A248920 A314325 * A109269 A216752 A216740
KEYWORD
nonn
AUTHOR
Philippe Deléham, Aug 09 2003
STATUS
approved