Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #125 May 05 2023 01:37:07
%S 1,0,1,0,1,2,0,1,5,5,0,1,9,21,14,0,1,14,56,84,42,0,1,20,120,300,330,
%T 132,0,1,27,225,825,1485,1287,429,0,1,35,385,1925,5005,7007,5005,1430,
%U 0,1,44,616,4004,14014,28028,32032,19448,4862,0,1,54,936,7644,34398,91728
%N Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.
%C Mirror image of triangle A133336. - _Philippe Deléham_, Dec 10 2008
%C From _Tom Copeland_, Oct 09 2011: (Start)
%C With polynomials
%C P(0,t) = 0
%C P(1,t) = 1
%C P(2,t) = t
%C P(3,t) = t + 2 t^2
%C P(4,t) = t + 5 t^2 + 5 t^3
%C P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
%C The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
%C B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
%C Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
%C Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - _Tom Copeland_, Mar 12 2012
%C Diagonals of A132081 are essentially rows of this sequence. - _Tom Copeland_, May 08 2012
%C T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - _Michel Marcus_, Nov 22 2014
%C From _Yu Hin Au_, Dec 07 2019: (Start)
%C T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
%C T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)
%H Michael De Vlieger, <a href="/A086810/b086810.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened.)
%H Yu Hin (Gary) Au, <a href="https://arxiv.org/abs/1912.00555">Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers</a>, arXiv:1912.00555 [math.CO], 2019.
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Barry3/barry252.html">On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays</a>, Journal of Integer Sequences, 16 (2013), #13.5.6.
%H Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.
%H Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry3/barry422.html">Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles</a>, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
%H V. Buchstaber and E. Bunkova,<a href="http://arxiv.org/abs/1010.0944">Elliptic formal group laws, integral Hirzebruch genera and Kirchever genera,</a>, arXiv:1010.0944 [math-ph], 2010 (see p. 19).
%H V. Buchstaber and T. Panov,<a href="http://arxiv.org/abs/1102.1079"> Toric Topology. Chapter 1: Geometry and Combinatorics of Polytopes,</a>, arXiv:1102.1079 [math.CO], 2011-2012 (see p. 41).
%H G. Chatel, V. Pilaud, <a href="http://arxiv.org/abs/1411.3704">Cambrian Hopf Algebras</a>, arXiv:1411.3704 [math.CO], 2014-2015.
%H T. Copeland, <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>, 2015.
%H T. Copeland, <a href="https://tcjpn.wordpress.com/2014/09/17/compositional-inverse-pairs-the-inviscid-burgers-hopf-equation-and-the-stasheff-associahedra/"> Compositional inverse pairs, the Burgers-Hopf equation, and the Stasheff associahedra</a>, 2014.
%H T. Copeland, <a href="https://tcjpn.wordpress.com/2011/04/11/lagrange-a-la-lah/">Lagrange a la Lah</a>, 2011.
%H B. Drake, Ira M. Gessel, and Guoce Xin, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Gessel/gessel20.html">Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry,</a> J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
%H G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1973__20__3_0">Sur les hiérarchies de segments</a>, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973, p. 21-22.
%H G. Kreweras, <a href="/A001844/a001844.pdf">Sur les hiérarchies de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
%H J. Zhou, <a href="http://arxiv.org/abs/1405.5296">Quantum deformation theory of the Airy curve and the mirror symmetry of a point</a>, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
%F Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
%F For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by _Marko Riedel_, May 04 2023]
%F Sum_{k>=0} T(n, k)*2^k = A107841(n). - _Philippe Deléham_, May 26 2005
%F Sum_{k>=0} T(n-k, k) = A005043(n). - _Philippe Deléham_, May 30 2005
%F T(n, k) = A108263(n+k, k). - _Philippe Deléham_, May 30 2005
%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - _Philippe Deléham_, Nov 05 2007
%F Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - _Philippe Deléham_, Dec 10 2008
%F Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - _Philippe Deléham_, Jan 17 2009
%F Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - _Tom Copeland_, Oct 04 2014
%F T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - _Michel Marcus_, Nov 22 2014
%F P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - _Tom Copeland_, Aug 22 2016
%e Triangle starts:
%e 1;
%e 0, 1;
%e 0, 1, 2;
%e 0, 1, 5, 5;
%e 0, 1, 9, 21, 14;
%e ...
%t Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after _Jean-François Alcover_ at A033282, or *)
%t Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Aug 22 2016 *)
%o (PARI) t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
%o tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ _Michel Marcus_, Nov 22 2014
%Y Diagonals: A000007, A000012, A000096, A033275, A033276, A033277, A033278, A033279, A000108, A002054, A002055, A002056, A007160, A033280, A033281.
%Y The diagonals (except for A000007) are also the diagonals of A033282.
%Y Row sums: A001003 (Schroeder numbers).
%Y Cf. A033282, A084938.
%Y Cf. A001003, A008297, A021009, A132081, A133437, A181289.
%K easy,nonn,tabl
%O 0,6
%A _Philippe Deléham_, Aug 05 2003
%E Typo in a(60) corrected by _Michael De Vlieger_, Nov 21 2019