Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 02 2024 04:32:47
%S 1,2,4,6,7,12,14,18,25,32,36,42,53,68,64,84,97,108,126,146,161,170,
%T 192,208,229,246,274,300,333,348,372,400,427,468,492,526,561,602,626,
%U 644,691,736,772,826,869,902,930,974,1017,1062,1120,1184,1223,1262,1314,1374,1419,1468,1518,1586,1663,1718,1778,1834,1899,1954,2018
%N a(n) is the number of nonzero terms in the expansion of (x-y) * (x^2-y^2) * (x^3-y^3) * ... * (x^n-y^n).
%C In the definition one can take y=1. - _Emeric Deutsch_, Jan 01 2008
%H Joerg Arndt, <a href="/A086781/b086781.txt">Table of n, a(n) for n = 0..1000</a>
%H Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.37193/CJM.2019.01.01">On some results concerning the polygonal polynomials</a>, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11.
%p a:=proc(n) options operator, arrow: nops(expand(product(x^j-y^j,j=1..n))) end proc: seq(a(n),n=0..50); # _Emeric Deutsch_, Jan 01 2008
%t Table[Length[Expand[Times@@(x^Range[n]-1)]],{n,50}] (* _Harvey P. Dale_, Mar 01 2012 *)
%o (PARI) a(n)=#select(w->w, Vec(prod(k=1,n,1-'x^k))); \\ _Joerg Arndt_, Apr 12 2017
%Y Cf. A000124, A086376.
%K nonn
%O 0,2
%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003
%E More terms from _Emeric Deutsch_, Jan 01 2008
%E a(0)=1 prepended by _Alois P. Heinz_, Apr 12 2017