%I #19 Mar 03 2023 20:32:34
%S 0,1,3,4,7,9,15,21,24,31,41,45,63,64,72,74,83,94,127,139,140,173,197,
%T 207,234,255,268,284,288,339,349,390,426,445,467,511,522,553,569,634,
%U 689,706,734,797,838,934,950,951,1023,1036,1052,1078,1179,1236
%N Store the natural numbers in a triangular array such that values on each row have the same number of bits. Start a new row with the smallest number not yet recorded. a(n) represents the initial terms in the resulting array.
%C A067576 describes the sequences with a fixed number of binary bits using antidiagonals.
%H Alois P. Heinz, <a href="/A086772/b086772.txt">Table of n, a(n) for n = 0..10000</a>
%e The array begins:
%e 0
%e 1 2
%e 3 5 6
%e 4 8 16 32
%e 7 11 13 14 19
%e 9 10 12 17 18 20
%e 15 23 27 29 30 39 43
%e ...
%e so the initial terms are 0 1 3 4 7 9 15 ...
%p A086772aux := proc(n,k)
%p option remember;
%p local a,npr,kpr,fnd ;
%p if n = 0 then
%p return 0;
%p end if;
%p if k = 0 then
%p for a from 1 do
%p fnd := false;
%p for npr from 1 to n-1 do
%p for kpr from 0 to npr do
%p if procname(npr,kpr) = a then
%p fnd := true;
%p break;
%p end if;
%p end do:
%p end do:
%p if not fnd then
%p return a;
%p end if;
%p end do:
%p else
%p for a from 1 do
%p if wt(a) = wt(procname(n,0)) then
%p fnd := false;
%p for npr from 1 to n-1 do
%p for kpr from 0 to npr do
%p if procname(npr,kpr) = a then
%p fnd := true;
%p break;
%p end if;
%p end do:
%p end do:
%p for kpr from 0 to k-1 do
%p if procname(n,kpr) = a then
%p fnd := true;
%p break;
%p end if;
%p end do:
%p if not fnd then
%p return a;
%p end if;
%p end if;
%p end do:
%p end if;
%p end proc:
%p A086772 := proc(n)
%p A086772aux(n,0) ;
%p end proc: # _R. J. Mathar_, Sep 15 2012
%Y Cf. A000079, A001477, A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691.
%K nonn,base
%O 0,3
%A _Alford Arnold_, Aug 03 2003