login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086753
Number of distinct entries in a slice of A046816.
2
1, 1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 19, 21, 24, 25, 30, 32, 37, 40, 43, 46, 51, 56, 59, 64, 67, 75, 79, 83, 91, 93, 102, 108, 111, 119, 125, 131, 139, 147, 154, 160, 167, 175, 183, 189, 199, 206, 214, 225, 233, 243, 250, 261, 268, 279, 289, 298, 309, 317
OFFSET
0,3
COMMENTS
Conjectured asymptotic: a(n) ~ (n^2 + 6*n - 12)/12. - Vladimir Reshetnikov, Dec 28 2021
LINKS
EXAMPLE
The slice for n=4 is
1
4 4
6 12 6
4 12 12 4
1 4 6 4 1
with distinct entries 1,4,6,12, so a(4) = 4.
MAPLE
p:= proc(i, j, k) option remember;
if i<0 or j<0 or k<0 or i>k or j>i then 0
elif {i, j, k}={0} then 1
else p(i, j, k-1) +p(i-1, j, k-1) +p(i-1, j-1, k-1)
fi
end:
a:= n-> nops({seq(seq(p(i, j, n), j=0..i), i=0..n)}):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2012
#
seq(nops({coeffs(expand((x+y+z)^n))}), n = 0 .. 100); # César Eliud Lozada, Jul 02 2015
#
seq(nops({seq(seq(n!/(i!*j!*(n-i-j)!), j=i..(n-i)/2), i=0..n/3)}), n=0..100); # Robert Israel, Jul 02 2015
MATHEMATICA
Table[Length @ Union @ Flatten @ Table[Table[n!/(i!*j!*(n-i-j)!), {j, i, (n-i)/2}], {i, 0, n/3}], {n, 0, 100}] (* Jean-François Alcover, Mar 19 2019, after Robert Israel *)
PROG
(PARI) { pt=vector(40, i, matrix(i, i)); pt[1][1, 1]=1; pt[2][1, 1]=1; pt[2][2, 1]=1; pt[2][2, 2]=1; pt[3][1, 1]=1; pt[3][2, 1]=2; pt[3][2, 2]=2; pt[3][3, 1]=1; pt[3][3, 2]=2; pt[3][3, 3]=1; for (i=4, 40, for (j=2, i-1, pt[i][j, 1]=pt[i-1][j-1, 1]+pt[i-1][j, 1]; pt[i][j, j]=pt[i][j, 1]; pt[i][i, j]=pt[i][j, 1] ); pt[i][1, 1]=1; pt[i][i, 1]=1; pt[i][i, i]=1; for(j=3, i-1, for (k=2, j-1, pt[i][j, k]=pt[i-1][j, k]+pt[i-1][j-1, k]+pt[i-1][j-1, k-1]))); pt } { makept(x)=local(xl, v, vc, uc); xl=length(x); v=vector(xl*(xl+1)/2); vc=0; for (i=1, xl, for (j=1, i, v[vc++ ]=x[i, j])); v=vecsort(v); uc=1; for (i=2, length(v), if (v[i]!=v[i-1], uc++)); print1(", "uc) } for (i=1, 40, makept(pt([i]))
CROSSREFS
Cf. A046816.
Sequence in context: A084092 A288927 A342513 * A160519 A287927 A241480
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 31 2003
EXTENSIONS
More terms from Alois P. Heinz, Aug 14 2012
STATUS
approved