login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086651
a(1)=1, a(2)=1 and for n > 2, a(n) is the smallest positive integer such that the third-order absolute difference gives the Fibonacci numbers A000045 = {1,1,2,3,5,8,...}.
0
1, 1, 2, 5, 5, 10, 23, 23, 2, 57, 57, 146, 379, 379, 2, 989, 989, 2586, 6767, 6767, 2, 17713, 17713, 46370, 121395, 121395, 2, 317813, 317813, 832042, 2178311, 2178311, 2, 5702889, 5702889, 14930354, 39088171, 39088171, 2, 102334157, 102334157
OFFSET
1,3
COMMENTS
It appears that a(6k+3) is always 2. Is this easy to prove?
FORMULA
a(n)= +a(n-1) +18*a(n-6) -18*a(n-7) -a(n-12) +a(n-13), n>15. - R. J. Mathar, Sep 15 2012
G.f. x + x^2 -x^3*(2+3*x+5*x^3+13*x^4-57*x^6+x^7-x^9-x^10+3*x^12) / ( (x-1) *(x^2+x-1) *(x^2-x-1) *(x^4-x^3+2*x^2+x+1) *(x^4+x^3+2*x^2-x+1) ). - R. J. Mathar, Sep 15 2012
CROSSREFS
Cf. A000045.
Sequence in context: A184443 A238655 A132295 * A074495 A081467 A194119
KEYWORD
nonn
AUTHOR
John W. Layman, Sep 11 2003
STATUS
approved