Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #101 Oct 13 2022 15:11:37
%S 1,1,1,1,6,1,1,15,15,1,1,28,70,28,1,1,45,210,210,45,1,1,66,495,924,
%T 495,66,1,1,91,1001,3003,3003,1001,91,1,1,120,1820,8008,12870,8008,
%U 1820,120,1,1,153,3060,18564,43758,43758,18564,3060,153,1,1,190,4845,38760
%N Triangle read by rows: T(n, k) = binomial(2n, 2k).
%C Terms have the same parity as those of Pascal's triangle.
%C Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
%C Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - _Philippe Deléham_, May 18 2005
%C Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - _Philippe Deléham_, May 18 2005
%C Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - _Philippe Deléham_, Sep 04 2005
%C Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - _Gary W. Adamson_, Apr 22 2008
%C From _Peter Bala_, Oct 23 2008: (Start)
%C Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
%C The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
%C (End)
%C Diagonal sums: A108479. - _Philippe Deléham_, Sep 08 2009
%C Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
%C Generalized Narayana triangle for 4^n (or cosh(2x)). - _Paul Barry_, Sep 28 2010
%C Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - _R. J. Mathar_, Mar 12 2013
%C Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - _Peter Bala_, Aug 06 2013
%C Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - _Tom Copeland_, Dec 12 2016
%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
%H Indranil Ghosh, <a href="/A086645/b086645.txt">Rows 0.. 120 of triangle, flattened</a>
%H F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, <a href="http://arxiv.org/abs/0809.5123">Root polytopes and growth series of root lattices</a> arXiv:0809.5123 [math.CO], 2008.
%H H. Chan, S. Cooper and P. Toh, <a href="http://dx.doi.org/10.1016/j.aim.2005.12.003">The 26th power of Dedekind's eta function</a> Advances in Mathematics, 207 (2006) 532-543.
%H T. Copeland, <a href="http://tcjpn.wordpress.com/2012/11/29/infinigens-the-pascal-pyramid-and-the-witt-and-virasoro-algebras/">Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras</a>, 2012.
%H T. Copeland, <a href="https://tcjpn.wordpress.com/2020/07/11/skipping-over-dimensions-juggling-zeros-in-the-matrix/">Skipping over Dimensions, Juggling Zeros in the Matrix</a>, 2020.
%H E. Lucas, <a href="http://edouardlucas.free.fr/gb/pdf/th_des_fonctions.pdf">Théorie des fonctions numériques simplement périodiques</a>, Baltimore, 1878. See page 145 equation (153).
%H W. Wang and T. Wang, <a href="http://dx.doi.org/10.1016/j.disc.2007.12.037">Generalized Riordan array</a>, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
%F T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
%F Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
%F Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - _Philippe Deléham_, Feb 29 2004
%F O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - _Peter Bala_, Oct 23 2008
%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - _Philippe Deléham_, Sep 08 2009
%F Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
%F From _Paul Barry_, Sep 28 2010: (Start)
%F G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
%F E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
%F T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
%F T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Nov 26 2013
%F From _Peter Bala_, Sep 22 2021: (Start)
%F n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
%F R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
%F R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)
%e From _Peter Bala_, Oct 23 2008: (Start)
%e The triangle begins
%e n\k|..0.....1.....2.....3.....4.....5.....6
%e ===========================================
%e 0..|..1
%e 1..|..1.....1
%e 2..|..1.....6.....1
%e 3..|..1....15....15.....1
%e 4..|..1....28....70....28.....1
%e 5..|..1....45...210...210....45.....1
%e 6..|..1....66...495...924...495....66.....1
%e ...
%e (End)
%e From _Peter Bala_, Aug 06 2013: (Start)
%e Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
%e 1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
%e 2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
%e 3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
%p A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
%t Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 13 2016 *)
%o (PARI) {T(n, k) = binomial(2*n, 2*k)};
%o (PARI) {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* _Michael Somos_, May 26 2005 */
%o (Maxima) create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* _Emanuele Munarini_, Mar 11 2011 */
%o (Magma) /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Dec 14 2016
%Y Cf. A098158, A000384, A081294.
%Y Cf. A008459, A108558, A127674, A142992. - _Peter Bala_, Oct 23 2008
%Y Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -_Wolfdieter Lang_, Jan 06 2013
%Y Cf. A086646 (unsigned matrix inverse), A103327.
%Y Cf. A034839.
%K nonn,tabl,easy
%O 0,5
%A _Philippe Deléham_, Jul 26 2003