OFFSET
1,2
COMMENTS
Every term has a unique prime signature. Conjecture: Every prime signature occurs in the sequence.
LINKS
Robert Israel, Table of n, a(n) for n = 1..731
EXAMPLE
a(4) = 1+2+3+6 = 12, where 1, 2, 3 and 6 are the first four terms of A086537.
MAPLE
ps:= proc(n) local F;
F:= ifactors(n)[2];
sort(F[.., 2])
end proc:
N:= 1000: # for terms before the first term > N of A086537
Cands:= [$1..N]:
R:= NULL: s:= 0: Sigs:= {}: found:= true:
for count from 1 while found do
found:= false;
for i from 1 to N+1-count do
sp:= s+Cands[i];
x:= ps(sp);
if member(x, Sigs) then next fi;
R:= R, sp;
Sigs:= Sigs union {x};
Cands:= subsop(i=NULL, Cands);
found:= true;
s:= sp;
break
od
od:
R; # Robert Israel, Jun 17 2024
PROG
(PARI) ps(n) = local(f); f = factor(n); vecsort(f[, 2]);
psUsed(v, n) = for (i = 1, n - 1, if (v == P[i], return(1))); 0;
print1(1, ", "); P = vector(70); used = vector(10000); x = 2; s = 1; for (n = 1, 70, i = x; v = ps(s + i); while (psUsed(v, n), i++; while (used[i], i++); v = ps(s + i)); used[i] = 1; P[n] = v; s += i; print1(s, ", "); while(used[x], x++)); \\ David Wasserman, Mar 15 2005
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 19 2003
EXTENSIONS
Corrected and extended by David Wasserman, Mar 15 2005
STATUS
approved