login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1 and then the smallest odd number not included earlier such that the arithmetic mean of a pair of successive terms is prime.
9

%I #12 Jun 30 2015 14:26:33

%S 1,3,7,15,11,23,35,27,19,39,43,31,51,55,63,59,47,71,75,67,79,87,91,

%T 103,99,95,83,111,107,119,135,127,147,115,139,123,131,143,155,159,167,

%U 179,183,151,163,171,175,187,195,191,203,219,227,231,215,207,239,243,211

%N a(1) = 1 and then the smallest odd number not included earlier such that the arithmetic mean of a pair of successive terms is prime.

%C Second term onwards rearrangement of odd numbers of the type 4n+3.

%H Reinhard Zumkeller, <a href="/A086517/b086517.txt">Table of n, a(n) for n = 1..10000</a>

%o (PARI) v=[1];n=1;while(n<100,s=(n+v[#v])/2;if(type(s)=="t_INT",if(isprime(s)&&!vecsearch(vecsort(v),n),v=concat(v,n);n=0));n++);v \\ _Derek Orr_, Jun 16 2015

%o (Haskell)

%o import Data.List (delete)

%o a086517 n = a086517_list !! (n-1)

%o a086517_list = 1 : f 1 [3, 5 ..] where

%o f x zs = g zs where

%o g (y:ys) = if a010051' ((x + y) `div` 2) == 1

%o then y : f y (delete y zs) else g ys

%o -- _Reinhard Zumkeller_, Jun 30 2015

%Y Cf. A086518.

%Y Cf. A259565, A259260, A259429, A259542, A010051, A005408.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Jul 30 2003

%E More terms from _David Wasserman_, Mar 10 2005