login
a(1) = 1 and then the smallest odd number not included earlier such that the arithmetic mean of a pair of successive terms is prime.
9

%I #12 Jun 30 2015 14:26:33

%S 1,3,7,15,11,23,35,27,19,39,43,31,51,55,63,59,47,71,75,67,79,87,91,

%T 103,99,95,83,111,107,119,135,127,147,115,139,123,131,143,155,159,167,

%U 179,183,151,163,171,175,187,195,191,203,219,227,231,215,207,239,243,211

%N a(1) = 1 and then the smallest odd number not included earlier such that the arithmetic mean of a pair of successive terms is prime.

%C Second term onwards rearrangement of odd numbers of the type 4n+3.

%H Reinhard Zumkeller, <a href="/A086517/b086517.txt">Table of n, a(n) for n = 1..10000</a>

%o (PARI) v=[1];n=1;while(n<100,s=(n+v[#v])/2;if(type(s)=="t_INT",if(isprime(s)&&!vecsearch(vecsort(v),n),v=concat(v,n);n=0));n++);v \\ _Derek Orr_, Jun 16 2015

%o (Haskell)

%o import Data.List (delete)

%o a086517 n = a086517_list !! (n-1)

%o a086517_list = 1 : f 1 [3, 5 ..] where

%o f x zs = g zs where

%o g (y:ys) = if a010051' ((x + y) `div` 2) == 1

%o then y : f y (delete y zs) else g ys

%o -- _Reinhard Zumkeller_, Jun 30 2015

%Y Cf. A086518.

%Y Cf. A259565, A259260, A259429, A259542, A010051, A005408.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Jul 30 2003

%E More terms from _David Wasserman_, Mar 10 2005