login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Symmetric version of square array A086460.
0

%I #6 Mar 30 2012 18:58:53

%S 1,1,1,1,1,1,1,2,2,1,1,3,4,3,1,1,4,6,6,4,1,1,5,8,9,8,5,1,1,6,10,12,12,

%T 10,6,1,1,7,12,15,16,15,12,7,1,1,8,14,18,20,20,18,14,8,1,1,9,16,21,24,

%U 25,24,21,16,9,1,1,10,18,24,28,30,30,28,24,18,10,1,1,11,20,27,32,35,36

%N Symmetric version of square array A086460.

%C Rows include A028310, A004277, A008486, A008574, A008706, A008458. Main diagonal is n^2+0^n (A000290, preceded by extra 1).

%F T(0, k)=T(n, 0)=1, T(n, k)=nk+0^n, n, k>0

%F Alternatively, triangle read by rows with formula t(n,m)=If[n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]. - _Roger L. Bagula_, Sep 06 2008

%e Rows begin

%e 1 1 1 1 1 ...

%e 1 1 2 3 4 ...

%e 1 2 4 6 8 ...

%e 1 3 6 9 12 ...

%e 1 4 8 12 16 ...

%e As a triangle:

%e {1},

%e {1, 1},

%e {1, 1, 1},

%e {1, 2, 2, 1},

%e {1, 3, 4, 3, 1},

%e {1, 4, 6, 6, 4, 1},

%e {1, 5, 8, 9, 8, 5, 1},

%e {1, 6, 10, 12, 12, 10, 6, 1},

%e {1, 7, 12, 15, 16, 15, 12, 7, 1},

%e {1, 8, 14, 18, 20, 20, 18, 14, 8, 1},

%e {1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1}

%t t[n_, m_] = If[ n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] - _Roger L. Bagula_, Sep 06 2008

%K easy,nonn,tabl

%O 0,8

%A _Paul Barry_, Jul 21 2003