login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A005578.
4

%I #23 Sep 08 2022 08:45:11

%S 1,2,4,7,13,24,46,89,175,346,688,1371,2737,5468,10930,21853,43699,

%T 87390,174772,349535,699061,1398112,2796214,5592417,11184823,22369634,

%U 44739256,89478499,178956985,357913956,715827898,1431655781,2863311547

%N Partial sums of A005578.

%C With [0,0,0] prepended to it, this is an autosequence of the first kind. - _Jean-François Alcover_, Oct 21 2019

%H Vincenzo Librandi, <a href="/A086445/b086445.txt">Table of n, a(n) for n = 0..1000</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Autosequence">Autosequence</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-3,2).

%F G.f.: (1-x-x^2)/((1+x)(1-x)^2(1-2x)).

%F a(n) = 2*2^n/3+(-1)^n/12+n/2+1/4.

%F a(n) = A000975(n) + A008619(n).

%F a(0) = 1, a(n) = floor(2*a(n-1) - n/2 + 1) for n>0. - _Gerald McGarvey_, Aug 31 2004

%F a(n+1) - 2*a(n) = -floor(n/2) = -A004526(n). - _Jean-François Alcover_, Oct 21 2019 [noticed by _Paul Curtz_ in a private e-mail]

%p A086445:=n->2*2^n/3+(-1)^n/12+n/2+1/4: seq(A086445(n), n=0..40); # _Wesley Ivan Hurt_, Apr 24 2017

%t CoefficientList[Series[(1-x-x^2)/((1+x)(1-x)^2(1-2x)),{x,0,40}],x] (* _Vincenzo Librandi_, Apr 05 2012 *)

%t LinearRecurrence[{3,-1,-3,2},{1,2,4,7},40] (* _Harvey P. Dale_, May 28 2015 *)

%o (Magma) [2*2^n/3+(-1)^n/12+n/2+1/4: n in [0..40]]; // _Vincenzo Librandi_, Apr 05 2012

%Y Cf. A000975, A004526, A005578, A008619.

%K nonn,easy

%O 0,2

%A _Paul Barry_, Jul 20 2003