login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Euler's totient of 3-smooth numbers: a(n) = A000010(A003586(n)).
1

%I #13 Dec 21 2020 02:24:02

%S 1,1,2,2,2,4,6,4,8,6,8,18,16,12,16,18,32,24,54,32,36,64,48,54,64,72,

%T 162,128,96,108,128,144,162,256,192,216,486,256,288,324,512,384,432,

%U 486,512,576,648,1024,1458,768,864,972,1024,1152,1296,2048,1458,1536

%N Euler's totient of 3-smooth numbers: a(n) = A000010(A003586(n)).

%C a(n) is 3-smooth.

%H Amiram Eldar, <a href="/A086420/b086420.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>.

%F n>1: a(n) = A003586(n) * (if A003586(n) mod 3 > 0 then 1/2 else (1 + A003586(n) mod 2)/3), a(1) = 1.

%F Sum_{n>=1} 1/a(n) = 21/4. - _Amiram Eldar_, Dec 21 2020

%t s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; EulerPhi /@ Union[s] (* _Amiram Eldar_, Jan 29 2020 *)

%Y Cf. A000010, A003586.

%K nonn

%O 1,3

%A _Reinhard Zumkeller_, Jul 18 2003