login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal exponent in prime factorization of 3-smooth numbers.
5

%I #8 Jan 29 2020 04:38:48

%S 0,1,1,2,1,3,2,1,4,1,1,3,5,2,1,1,6,2,4,1,2,7,2,1,1,3,5,8,2,2,1,3,1,9,

%T 2,3,6,1,3,2,10,2,4,1,1,3,3,11,7,2,4,2,1,3,4,12,1,2,4,3,1,8,3,5,13,2,

%U 2,4,4,1,1,3,5,14,3,2,9,4,5,1,2,3,5,15,4,2,1,4,6,1,3,3,10,5,16,5,2,2

%N Minimal exponent in prime factorization of 3-smooth numbers.

%H Amiram Eldar, <a href="/A086414/b086414.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A051904(A003586(n));

%F a(n) <= A086415(n) <= A069352(n).

%t s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; maxExp[1] = 0; maxExp[n_] := Min @@ Last /@ FactorInteger[n]; maxExp /@ Union[s] (* _Amiram Eldar_, Jan 29 2020 *)

%Y Cf. A003586, A051904, A069352, A086415.

%K nonn

%O 1,4

%A _Reinhard Zumkeller_, Jul 18 2003