login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digital root of n!.
3

%I #28 Jan 26 2023 21:21:46

%S 1,1,2,6,6,3,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

%T 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

%U 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9

%N Digital root of n!.

%C a(n) = 9 for n >= 6.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F a(n) = A010888(n!) = fixed-point of A007953(n!). It equals n! modulo(9); at r = 0 use 9.

%F G.f.: (1 + x^2 + 4*x^3 - 3*x^5 + 6*x^6)/(1 - x). - _Stefano Spezia_, Jan 26 2023

%e n = 5, 5 != 120, iteration list = {120,3}, a(5) = 3.

%t sud[x_] := Apply[Plus, DeleteCases[IntegerDigits[x], 0]]; Table[FixedPoint[sud, w!], {w, 1, 87}]

%Y Cf. A000142, A086353-A086361, A007953, A010888, A038194, A029898, A004152.

%K nonn,base,easy

%O 0,3

%A _Labos Elemer_, Jul 21 2003

%E a(0) = 1 prepended by _Alois P. Heinz_, Dec 05 2018