login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n circulant singular (0,1) matrices over the reals.
3

%I #17 Feb 13 2018 12:58:17

%S 1,2,2,8,2,28,2,96,62,284,2,1504,2,3560,2738,16896,2,67636,2,235736,

%T 109334,707480,2,4376848,206282,10408792,5417630,48753784,2,212560504,

%U 2,739236864,278770214,2333737292,133401818,13837799440,2

%N Number of n X n circulant singular (0,1) matrices over the reals.

%C a(2*n+1) = A144926(2*n+1), n>0. a(2*p) = 2^p + binomial(2*p,p) if p is an odd prime, cf. A144926. - _Vladeta Jovovic_, Oct 02 2008

%H W. F. Lunnon, <a href="/A086328/b086328.txt">Table of n, a(n) for n = 1..39</a>

%H W. F. Lunnon, <a href="/A144926/a144926.txt">C program for A144926 and A086328</a>

%F a(n) = 2^n - A086323(n).

%F For a prime p, a(p) = 2 and the two circulants are those with all rows equal (0, 0, 0, ..., 0) or all rows equal (1, 1, 1, ..., 1).

%Y Cf. A086323, A086324.

%K nonn

%O 1,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003

%E More terms from _Fred Lunnon_, Oct 28 2008

%E a(0) removed, a(1) corrected by _Max Alekseyev_, Sep 25 2009