%I #10 Feb 05 2014 20:44:18
%S 3,6,15,39,87,102,267,507,582,699,1299,1830,2955,3975,4791,8691,12543,
%T 17223,19398,22683,27231,32838,44103,85971,100383,112998,129783,
%U 154923,186630,225075,289671,405411,585075,589254,884055,1279167,1498179,1542687,1938054,2777295,3410067,3836454
%N Markoff numbers (A002559) multiplied by 3.
%C Numbers n such that the Diophantine equation x^2+y^2+z^2 = x*y*z = n can be solved.
%C A list of x′s in nondecreasing order over all solutions of x^2+y^2+z^2 = x*y*z, with x >= y >= z.
%C x,y,z is a solution of x^2+y^2+z^2 = 3x*y*z if and only if 3x,3y,3z is a solution of x^2+y^2+z^2 = x*y*z.
%e a(1)=1,a(2)=6,a(3)=15, for (3,3,3), (6,3,3) and (15,6,3) are solutions of x^2+y^2+z^2=x*y*z.
%K nonn
%O 1,1
%A Antoine Verroken (antoine.verroken(AT)pandora.be), Aug 27 2003