%I #13 Oct 17 2021 04:18:44
%S 1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,3,1,2,1,2,2,3,1,4,2,3,3,1,1,4,2,4,3,
%T 1,6,2,3,5,1,3,6,6,2,2,5,3,4,8,5,1,2,7,5,4,3,3,10,2,6,7,5,9,3,4,4,10,
%U 6,8,1,15,3,2,5,2,4,14,10,8,6,6,15,5,4,12,7,7,10,15,3,6,8,8,5,15,12
%N Differences of successive 7-smooth numbers.
%C A002473(n) is a term of A085153 iff a(n)=1.
%H David A. Corneth, <a href="/A086247/b086247.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%F a(n) = A002473(n+1) - A002473(n).
%e a(23) = 3 as A002473(23 + 1) - A002473(23) = 35 - 32 = 3. - _David A. Corneth_, Mar 31 2021
%t smooth7Q[n_] := n == Times@@({2, 3, 5, 7}^IntegerExponent[n, {2, 3, 5, 7}]);
%t Select[Range[1000], smooth7Q] // Differences (* _Jean-François Alcover_, Oct 17 2021 *)
%Y Cf. A002473, A061987, A085153.
%K nonn,look
%O 1,10
%A _Reinhard Zumkeller_, Jul 13 2003