login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(3^n,2^n).
1

%I #10 Sep 08 2022 08:45:11

%S 1,3,126,2220075,33594090947249085,

%T 9812294412288780842726471233974791140221,

%U 747581321238203931168470352555568799370148397202082975882483140118428447896681620077224288595

%N a(n) = C(3^n,2^n).

%C Upper bound on the number of compressed [irredundant] disjunctive normal forms of Boolean functions with n variables.

%D Gavrilov G.P. and Saposhenko A.A.: Problems Book in Discrete Mathematics. [Hungarian translation], Muszaki Kiado,1981.

%t Table[Binomial[3^w, 2^w], {w, 1, 5}]

%o (PARI) a(n)=binomial(3^n,2^n) \\ _Charles R Greathouse IV_, Dec 19 2011

%o (Magma) [Binomial(3^n,2^n) : n in [0..7]]; // _Wesley Ivan Hurt_, Apr 20 2021

%Y Cf. A023265.

%K nonn

%O 0,2

%A _Labos Elemer_, Aug 07 2003