login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of positive root of x^4 - x^3 - 1 = 0.
17

%I #42 Aug 21 2023 10:19:07

%S 1,3,8,0,2,7,7,5,6,9,0,9,7,6,1,4,1,1,5,6,7,3,3,0,1,6,9,1,8,2,2,7,3,1,

%T 8,7,7,8,1,6,6,2,6,7,0,1,5,5,8,7,6,3,0,2,5,4,1,1,7,7,1,3,3,1,2,1,1,2,

%U 4,9,5,7,4,1,1,8,6,4,1,5,2,6,1,8,7,8,6,4,5,6,8,2,4,9,0,3,5,5,0,9,3,7

%N Decimal expansion of positive root of x^4 - x^3 - 1 = 0.

%C Also the growth constant of the Fibonacci 3-numbers A003269 [Stakhov et al.]. - _R. J. Mathar_, Nov 05 2008

%H Iain Fox, <a href="/A086106/b086106.txt">Table of n, a(n) for n = 1..20000</a>

%H Simon Baker, <a href="https://arxiv.org/abs/1711.10397">Exceptional digit frequencies and expansions in non-integer bases</a>, arXiv:1711.10397 [math.DS], 2017. See the beta(3) constant pp. 3-4.

%H A. Stakhov and B. Rozin, <a href="http://dx.doi.org/10.1016/j.chaos.2005.04.106">Theory of Binet formulas for Fibonacci and Lucas p-numbers</a>, Chaos, Solit. Fractals 27 (2006), 1162-1177.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pisot-VijayaraghavanConstant.html">Pisot-Vijayaraghavan Constant</a>

%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>

%F Equals (1 + (A^2 + sqrt(A^4 - 16*u*A^2 + 2*A))/A)/4 with A = sqrt(8*u + 3/2), u = (-(Bp/2)^(1/3) + (Bm/2)^(1/3)*(1 - sqrt(3)*i)/2 - 3/8)/6, with Bp = 27 + 3*sqrt(3*283), Bm = 27 - 3*sqrt(3*283), and i = sqrt(-1). (Standard computation of a quartic.) The other (negative) real root -A230151 is obtained by using in the first formula the negative square root. The other two complex roots are obtained by replacing A by -A in these two formulas. - _Wolfdieter Lang_, Aug 19 2022

%e 1.380277569...

%e The four solutions are the present one, -A230151, and the two complex ones 0.2194474721... - 0.9144736629...*i and its complex conjugate. - _Wolfdieter Lang_, Aug 19 2022

%t RealDigits[Root[ -1 - #1^3 + #1^4 &, 2], 10, 110][[1]]

%o (PARI) polrootsreal( x^4-x^3-1)[2] \\ _Charles R Greathouse IV_, Apr 14 2014

%o (PARI) default(realprecision, 20080); x=solve(x=1, 2, x^4 - x^3 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b086106.txt", n, " ", d)); \\ _Iain Fox_, Oct 23 2017

%Y Cf. -A230151 (other real root).

%Y Cf. A060006.

%K nonn,cons

%O 1,2

%A _Eric W. Weisstein_, Jul 09 2003