login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086098
Sum of rank(M) over all n X n matrices over GF(2).
3
1, 21, 1141, 208965, 139889701, 354550756581, 3464730268306021, 131934922593867875685, 19707939574875773323508581, 11599530748705611712884878698341, 26983642577843418550426409405086580581, 248652621703069011230281370429818425958461285
OFFSET
1,2
COMMENTS
a(n) <= A086875(n).
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
For prime power q the number of rank-r n X n matrices over GF(q) is F(r, n) = product j=0..(r-1) (q^n-q^j)^2/(q^r-q^j) so a(n) = sum r=1..n r*product j=0..(r-1) (q^n-q^j)^2/(q^r-q^j) . In this case q=2.
a(n) = Sum_{r=1..n} r*Product_{j=0, r-1} (2^n - 2^j)^2/(2^r - 2^j). - Andrew Howroyd, Jul 08 2018
PROG
(PARI) a(n) = {my(q=2); sum(r=1, n, r*prod(j=0, r-1, (q^n-q^j)^2/(q^r-q^j)))} \\ Andrew Howroyd, Jul 08 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 24 2003
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jul 08 2018
STATUS
approved