login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.
16

%I #63 Oct 27 2023 10:03:03

%S 1,9,2,7,5,6,1,9,7,5,4,8,2,9,2,5,3,0,4,2,6,1,9,0,5,8,6,1,7,3,6,6,2,2,

%T 1,6,8,6,9,8,5,5,4,2,5,5,1,6,3,3,8,4,7,2,7,1,4,6,6,4,7,0,3,8,0,0,9,6,

%U 6,6,0,6,2,2,9,7,8,1,5,5,5,9,1,4,9,8,1,8,2,5,3,4,6,1,8,9,0,6,5,3,2,5

%N Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.

%C The tetranacci constant corresponds to the Golden Section in a quadripartite division 1 = u_1 + u_2 + u_3 + u_4 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 = c, c is the tetranacci constant. - _Seppo Mustonen_, Apr 19 2005

%C The other 3 polynomial roots of 1+x+x^2+x^3-x^4 are -0.77480411321543385... and the complex-conjugated pair -0.07637893113374572508475 +- i * 0.814703647170386526841... - _R. J. Mathar_, Oct 25 2008

%C The continued fraction expansion starts 1, 1, 12, 1, 4, 7, 1, 21, 1, 2, 1, 4, 6, 1, 10, 1, 2, 2, 1, 7, 1, 1,... - _R. J. Mathar_, Mar 09 2012

%C For n>=4, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - _Vladimir Shevelev_, Mar 21 2014

%C Note that we have: c + c^(-4) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - _Bernard Schott_, May 09 2022

%D Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

%H Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, <a href="https://doi.org/10.7546/nntdm.2020.26.1.179-190">On the Generalized Fibonacci-circulant-Hurwitz numbers</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.

%H O. Deveci, Y. Akuzum, E. Karaduman, and O. Erdag, <a href="http://dx.doi.org/10.5539/jmr.v7n2p34">The Cyclic Groups via Bezout Matrices</a>, Journal of Mathematics Research, Vol. 7, No. 2, 2015, pp. 34-41.

%H Gültekin, İnci; Deveci, Ömür, <a href="https://doi.org/10.1515/math-2016-0100">On the arrowhead-Fibonacci numbers</a>. Open Math. 14, 1104-1113 (2016).

%H S. Litsyn and Vladimir Shevelev, <a href="http://dx.doi.org/10.1142/S1793042105000339">Irrational Factors Satisfying the Little Fermat Theorem</a>, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.

%H Vladimir Shevelev, <a href="http://list.seqfan.eu/oldermail/seqfan/2014-March/012750.html">A property of n-bonacci constant</a>, Seqfan (Mar 23 2014)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetranacciNumber.html">Tetranacci Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DiskCoveringProblem.html">Disk Covering Problem</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetranacciConstant.html">Tetranacci Constant</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>

%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>

%F Equals 1/4 + sqrt(11/48 - s/72 + 7/s) + sqrt(11/24 + s/72 - 7/s + 1 / sqrt(704/507 - 128 * s/1521 + 7168 / (169 * s))) where s = (sqrt(177304464) + 7020)^(1/3). - _Michal Paulovic_, Oct 08 2022

%e 1.927561975...

%t RealDigits[Root[ -1-#1-#1^2-#1^3+#1^4&, 2], 10, 110][[1]]

%o (PARI) real(polroots(1+x+x^2+x^3-x^4)[2]) \\ _Charles R Greathouse IV_, Jul 19 2012

%o (PARI) polrootsreal(1+x+x^2+x^3-x^4)[2] \\ _Charles R Greathouse IV_, Apr 14 2014

%Y Cf. A000078.

%Y k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), this sequence (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

%K nonn,cons

%O 1,2

%A _Eric W. Weisstein_, Jul 08 2003