|
|
A086062
|
|
Sum of first n 3-almost primes.
|
|
6
|
|
|
8, 20, 38, 58, 85, 113, 143, 185, 229, 274, 324, 376, 439, 505, 573, 643, 718, 794, 872, 964, 1062, 1161, 1263, 1368, 1478, 1592, 1708, 1825, 1949, 2074, 2204, 2342, 2489, 2637, 2790, 2944, 3108, 3273, 3443, 3614, 3786, 3960, 4135, 4317, 4503, 4691, 4881
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Elements in this sequence can themselves be 3-almost primes. a(1) = 8 = 2^3. a(2) = 20 = 2^2 * 5. a(20) = 964 = 2^2 * 241. a(28) = 1825 = 5^2 * 73. a(30) = 2074 = 2 * 17 * 61. a(34) = 2637 = 3^2 * 293. a(40) = 3614 = 2 * 13 * 139. a(41) = 3786 = 2 * 3 * 631. a(45) = 4503 = 3 * 19 * 79. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(2)=20 because sum of first two 3-almost primes i.e. 8+12 is 20.
|
|
MATHEMATICA
|
Accumulate[Select[Range[500], PrimeOmega[#]==3&]] (* Harvey P. Dale, Jan 17 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|